Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Chloro(methyl)bis(tricyclohexylphosphine)platinum(II)

Stefanus Otto

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa, and Inorganic Chemistry 1, Chemical Centre, University of Lund, PO Box 124, SE-221 00 Lund, Sweden
Correspondence e-mail: stefanus.otto@inorg.lu.se

Received 5 March 2001
Accepted 6 April 2001
The crystal structure of the title compound, $[\mathrm{PtCl}-$ $\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}$], is isostructural with various platinum(II) and palladium(II) complexes containing two bulky tricyclohexylphosphine ligands in a trans orientation. The Pt atom resides on an inversion centre, resulting in a 50% statistical disorder in the chloro and methyl positions. The most significant geometrical parameters are $\mathrm{Pt}-\mathrm{P} 2.3431$ (8), $\mathrm{Pt}-\mathrm{Cl} 2.440$ (4) and $\mathrm{Pt}-\mathrm{C} 12.179$ (13) \AA, and $\mathrm{P}-\mathrm{Pt}-\mathrm{P} 180$, $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl} \quad 89.15(12)$ and $90.85(12)$, and $\mathrm{C}-\mathrm{Pt}-\mathrm{Cl}$ 172.7 (5) ${ }^{\circ}$. The effective and Tolman cone angles for the tricyclohexylphosphine ligands were calculated as 160 and 162°, respectively.

Comment

As part of a systematic investigation involving complexes with the general formula trans- $\left[\mathrm{MeCl}(L)_{2}\right] \quad(M=\mathrm{Pt}$ or $\mathrm{Pd} ; L=$ tertiary phosphine or arsine ligands), crystals of the title compound, (I), were obtained.

(I)

The Pt atom lies on an inversion centre, resulting in a 50% statistical disorder in the chloro and methyl positions, while the phosphine ligands are in a trans orientation with an 180° angle due to symmetry requirements. All angles within the Pt coordination sphere are close to those expected for an ideal square-planar environment, with $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$ angles of 89.15 (12) and $90.85(12)^{\circ}$, and $\mathrm{P}-\mathrm{Pt}-\mathrm{C} 1$ angles of 89.8 (4) and $90.2(4)^{\circ}$. The $\mathrm{C} 1-\mathrm{Pt}-\mathrm{Cl}$ angle of $172.7(5)^{\circ}$, however, deviates quite substantially from 180°, while the angle between the disordered ligands, i.e. $\mathrm{Cl}-\mathrm{Pt}-\mathrm{C}^{\prime}$ or $\mathrm{C} 1-\mathrm{Pt}-$ Cl^{\prime}, was determined as $7.3(5)^{\circ}$. The $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{Cl}$ bond distances of 2.3431 (8) and 2.440 (4) \AA are within normal ranges for a complex containing large phosphine ligands and a strong labilizing group, such as methyl, trans to the Cl ligand.

The $\mathrm{Pt}-\mathrm{C} 1$ bond distance of 2.179 (13) \AA is slightly longer than expected and may be an artifact of the disorder between the methyl and chloro ligands, a conclusion confirmed by the large uncertainty associated with this specific bond.

All three of the cyclohexyl (Cy) substituents of the phosphine ligands adopt the expected chair conformation for saturated six-membered rings and are exactly staggered with respect to the trans phosphine due to the inversion centre at the Pt position. The average tetrahedral angles around the P atom of 104.87 (16) and $113.65(12)^{\circ}$ for $\mathrm{C}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{Pt}$, respectively, indicate that the substituents are slightly compressed towards each other as is normally encountered in coordinated phosphine ligands.

Measuring the spatial impact of a ligand in a coordination complex is an issue that has attracted much interest in the past and will continue to do so in future as the existing models are refined and new models are introduced. One such model and

Figure 1
The structure of the title complex with the atom-numbering scheme and 30% probability displacement ellipsoids. The disorder in the chloro and methyl positions is not indicated. The H atoms of the methyl group are of arbitrary size, while those of the cyclohexyl rings have been omitted for clarity.
probably the most generally recognized measure of steric size of phosphine ligands is the Tolman cone angle (Tolman, 1977). In this regard, it has been noted before that the flexibility of the PCy_{3} ligand allows several conformers of the cyclohexyl groups to exist, leading to values for the Tolman cone angle ranging from 163° for trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ (Alcock \& Leviston, 1974; Ferguson et al., 1978) up to the 181° value determined in $\left[\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ (Alyea et al., 1977). In this study, the coneangle calculations were performed based on Tolman's model using $\mathrm{C}-\mathrm{H}$ bond distances of $0.97 \AA$ and a van der Waals H atom radius of $1.2 \AA$. The effective cone angle is calculated in a similar way to the Tolman cone angle but using the actual $\mathrm{Pt}-\mathrm{P}$ bond distance determined from the crystallographic data, while a fixed distance of $2.28 \AA$ is used for the Tolman cone-angle calculations. Values of 160 and 162° were calculated for the effective and Tolman cone angles, respectively. Both these values are very similar to the value of 163° determined for the isostructural trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ complex, as mentioned above.

In Table 2, the title compound is compared with other closely related $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ complexes from the literature containing two bulky tricyclohexylphosphine ligands in a trans orientation. The compound was found to be isostructural with several of these complexes, as indicated, showing that the crystal packing is predominantly determined by the tricyclohexylphosphine ligands and only when the metal core is drastically influenced as by the introduction of a phenyl or H ligand are the packing modes changed.

In Table 3, the title compound is compared with related trans-[$\left.\mathrm{MMeCl}(L)_{2}\right] \quad(M=\mathrm{Pd}$ or $\mathrm{Pt} ; L=\mathrm{P}$ or As ligands) complexes, illustrating the effect of different phosphine and arsine ligands on the geometrical parameters. The $\mathrm{Pt}-\mathrm{P}$ bond distance of 2.3431 (8) \AA is comparably longer than the other $M-\mathrm{P}$ bond distances, even longer than in the $\mathrm{PdPPh}_{2} \mathrm{Fc}$ complex (Fc is ferrocenyl) that also contains a bulky phosphine ligand. This can, in addition to the large size of PCy_{3}, also be due to the strong electron-donating capability of this ligand causing a mutual labilization when occupying positions trans to each other. The $\mathrm{Pt}-\mathrm{Cl}$ bond distance of 2.440 (4) \AA is also slightly longer than in the related complexes and is probably a combination of steric crowding and an electronrich metal centre. Although the $\mathrm{Pd}-L$ bond lengths seem to be slightly longer than in the corresponding $\mathrm{Pt}-L$ complexes, this effect is not as evident in the $M-\mathrm{Cl}$ bonds.

Experimental

[$\mathrm{PtMeCl}(\mathrm{COD})]$ (COD is cis,cis-cycloocta-1,5-diene) was prepared according to literature procedures (Clark \& Manzer, 1973). To a solution of $[\mathrm{PtMeCl}(\mathrm{COD})](50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$ was added $\mathrm{PCy}_{3}(98 \mathrm{mg}, 0.35 \mathrm{mmol})$ dissolved in dichloromethane (8 ml). Slow evaporation of this solution yielded colourless crystals suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.28(t, 3 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{P}-\mathrm{H}}=11 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=84 \mathrm{~Hz}\right), 2.6-1.2(m, 66 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 21.9\left(t,{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2822 \mathrm{~Hz}\right)$.

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}\right]$
$M_{r}=806.40$
Triclinic, $P \overline{1}$
$a=10.654$ (2) \AA
$b=10.0701$ (8) \AA
$c=10.2620(9) \AA$
$\alpha=91.4460(8)^{\circ}$
$\beta=109.639(2)^{\circ}$
$\gamma=112.649(2)^{\circ}$
$V=941.7(2) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.422 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5952 \\
& \quad \text { reflections } \\
& \theta=2.2-29.7^{\circ} \\
& \mu=3.90 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.49 \times 0.32 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD diffrac-	$R_{\text {int }}=0.027$
\quad tometer	$\theta_{\max }=32.0^{\circ}$
ω scans	$h=-14 \rightarrow 14$
Absorption correction: empirical	$k=-14 \rightarrow 14$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$l=-13 \rightarrow 14$
$T_{\min }=0.093, T_{\max }=0.142$	first 50 frames repeated after data
10201 measured reflections	collection
5659 independent reflections	intensity decay: none
5169 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.076$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0444 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.00$
$(\Delta / \sigma)_{\max }<0.001$
5659 reflections
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.18 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Pt}-\mathrm{P}$	$2.3431(8)$	$\mathrm{P}-\mathrm{C} 11$	$1.851(3)$
$\mathrm{Pt}-\mathrm{C} 1$	$2.179(13)$	$\mathrm{P}-\mathrm{C} 21$	$1.864(4)$
$\mathrm{Pt}-\mathrm{Cl}$	$2.440(4)$	$\mathrm{P}-\mathrm{C} 31$	$1.812(3)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$	$89.15(12)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{Pt}-\mathrm{P}$	$90.2(4)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$	$90.85(12)$	$\mathrm{C} 11-\mathrm{P}-\mathrm{Pt}$	$112.44(11)$
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{Cl}$	$172.7(5)$	$\mathrm{C} 21-\mathrm{P}-\mathrm{Pt}$	$116.74(10)$
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{P}$	$89.8(4)$	$\mathrm{C} 31-\mathrm{P}-\mathrm{Pt}$	$111.78(12)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Comparative X-ray data for trans-[M(X)(Y)(PCy $\left.)_{2}\right]$ complexes.

$M(X)(Y)$	$M-\mathrm{P}(\AA)$	$M-X(\AA)$	$M-Y(\AA)$	Type ${ }^{a}$
$\mathrm{Ni}(\mathrm{Cl})(\mathrm{Cl})^{\text {i }}$	2.278	2.188	2.188	I
$\mathrm{Pd}(\mathrm{Cl})(\mathrm{Cl})^{\text {ii }}$	2.3628 (9)	2.3012 (9)	2.3012 (9)	I
$\mathrm{Pt}(\mathrm{Cl})(\mathrm{Cl})^{\text {iii }}$	2.337 (2)	2.317 (2)	2.317 (2)	I
$\mathrm{Pt}(\mathrm{Br})(\mathrm{Br})^{\text {iv }}$	2.345 (1)	2.435 (1)	2.435 (1)	I
$\mathrm{Pt}(\mathrm{I})(\mathrm{I})^{\mathrm{v}}$	2.371 (2)	2.612 (1)	2.612 (1)	I
$\mathrm{Pt}(\mathrm{Me})(\mathrm{Cl})^{\text {vi }}$	2.3431 (8)	2.179 (13)	2.440 (4)	I
$\mathrm{Pd}(\mathrm{Ph})(\mathrm{Cl})^{\text {vii }}$	2.343 (1)	2.004 (6)	2.403 (1)	NI
	2.347 (1)			
$\operatorname{Pt}(\mathrm{H})(\mathrm{H})^{\text {viii }}$	2.26 (1)			NI

Notes: (a) I = isostructural, NI = not isostructural; (i) Bellon et al. (1963), obtained from the Cambridge Structural Database without s.u.'s; (ii) Grushin et al. (1994); (iii) Del Pra \& Zanotti (1980); (iv) Cameron et al. (1990); (v) Alcock \& Leviston (1974); (vi) this work; (vii) Huser et al. (1989); (viii) Immirzi et al. (1975).

Table 3
Comparative X-ray data for trans- $\left[\operatorname{MMeCl}(L)_{2}\right](M=\mathrm{Pd}, \mathrm{Pt} ; L=$ tertiary phosphine or arsine ligand) complexes.

$M(L)$	$M-L(\AA)$	$M-\mathrm{C}(\AA)$	$M-\mathrm{Cl}(\AA)$
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)^{\mathrm{ix}}$	2.295 (3)	2.08 (1)	2.431 (3)
	2.298 (3)		
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)^{\mathrm{x}}$	2.2955 (10)	2.02 (2)	2.415 (5)
$\mathrm{Pt}\left(\mathrm{PCy}_{3}\right)^{\mathrm{xi}}$	2.3431 (8)	2.179 (13)	2.440 (4)
$\mathrm{Pt}\left(\mathrm{AsPh}_{3}\right)^{\text {xii }}$	2.3856 (9)	2.073 (8)	2.410 (2)
	2.3786 (9)		
$\mathrm{PtAs}(p-\mathrm{MePh})_{3}{ }^{\text {xiii }}$	2.3883 (10)	2.111 (9)	2.397 (3)
	2.3875 (10)		
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)^{\text {xiv }}$	2.3289 (7)	2.054 (2)	2.4227 (6)
	2.3224 (7)		
$\mathrm{Pd}\left(\mathrm{AsPh}_{3}\right)^{\mathrm{xv}}$	2.3989 (5)	2.095 (4)	2.4086 (11)
	2.4067 (5)		
$\mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{Fc}\right)^{\text {xvi }}$	2.3328 (10)	2.108 (10)	2.378 (3)

Notes: (ix) Bardi \& Piazzesi (1981); (x) Otto et al. (1995); (xi) this work; (xii) Roodt et al. (1995); (xiii) Otto \& Roodt (1996); (xiv) Otto (2001); (xv) Rath et al. (1995); (xvi) Otto et al. (2000).

[^0]Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97.

Financial assistance from the South African FRD and the Research Fund of the University of the Free State is gratefully acknowledged. The Chemical Centre of the University of Lund, Sweden, is thanked for the use of their diffractometer for the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1050). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W. \& Leviston, P. G. (1974). J. Chem. Soc. Dalton Trans. pp. 18341836.

Alyea, E. C., Diaz, S. A., Ferguson, G. \& Restivo, R. J. (1977). Inorg. Chem. 16, 2329-2334.
Bardi, R. \& Piazzesi, A. M. (1981). Inorg. Chim. Acta, 47, 249-254.

Bellon, P. L., Albano, V., Bianco, V. D., Pompa, F. \& Scatturin, V. (1963). Ric. Sci. 3, 1213-1220.
Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cameron, T. S., Clark, H. C., Linden, A. \& Nicholas, A. M. (1990). Polyhedron, 9, 1683-1688.
Clark, H. C. \& Manzer, L. E. (1973). J. Organomet. Chem. 59, 411-428.
Del Pra, A. \& Zanotti, G. (1980). Inorg. Chim. Acta, 39, 137-141.
Ferguson, G., Roberts, P. J., Alyea, E. C. \& Khan, M. (1978). Inorg. Chem. 17, 2965-2967.
Grushin, V. V., Bensimon, C. \& Alper, H. (1994). Inorg. Chem. 33, 4804-4806.
Huser, M., Youinou, M.-T. \& Osborn, J. A. (1989). Angew. Chem. Int. Ed. Engl. 28, 1386-1388.
Immirzi, A., Musco, A., Carturan, G. \& Belluco, U. (1975). Inorg. Chim. Acta, 12, L23-24.
Otto, S. (2001). Acta Cryst. E57, m75-77.
Otto, S. \& Roodt, A. (1996). Acta Cryst. C52, 1636-1638.
Otto, S., Roodt, A. \& Leipoldt, J. G. (1995). S. Afr. J. Chem. 48, 114 119.

Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Rath, N. P., Ladipo, F. T. \& Anderson, G. K. (1995). Acta Cryst. C51, 12891290.

Roodt, A., Otto, S. \& Leipoldt, J. G. (1995). Acta Cryst. C51, 1105-1106.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

[^0]: H atoms were refined as riding $(\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$. Both the minimum and maximum residual electron density lie within $1 \AA$ of the Pt atom.

